Flip-flop-induced relaxation of bending energy: implications for membrane remodeling.
نویسندگان
چکیده
Cellular and organellar membranes are dynamic materials that underlie many aspects of cell biology. Biological membranes have long been thought of as elastic materials with respect to bending deformations. A wealth of theory and experimentation on pure phospholipid membranes provides abundant support for this idea. However, biological membranes are not composed solely of phospholipids--they also incorporate a variety of amphiphilic molecules that undergo rapid transbilayer flip-flop. Here we describe several experimental systems that demonstrate deformation-induced molecular flip-flop. First we use a fluorescence assay to track osmotically controlled membrane deformation in single component fatty acid vesicles, and show that the relaxation of the induced bending stress is mediated by fatty acid flip-flop. We then look at two-component phospholipid/cholesterol composite vesicles. We use NMR to show that the steady-state rate of interleaflet diffusion of cholesterol is fast relative to biological membrane remodeling. We then use a Förster resonance energy transfer assay to detect the transbilayer movement of cholesterol upon deformation. We suggest that our results can be interpreted by modifying the area difference elasticity model to account for the time-dependent relaxation of bending energy. Our findings suggest that rapid interleaflet diffusion of cholesterol may play a role in membrane remodeling in vivo. We suggest that the molecular characteristics of sterols make them evolutionarily preferred mediators of stress relaxation, and that the universal presence of sterols in the membranes of eukaryotes, even at low concentrations, reflects the importance of membrane remodeling in eukaryotic cells.
منابع مشابه
A new low power high reliability flip-flop robust against process variations
Low scaling technology makes a significant reduction in dimension and supply voltage, and lead to new challenges about power consumption such as increasing nodes sensitivity over radiation-induced soft errors in VLSI circuits. In this area, different design methods have been proposed to low power flip-flops and various research studies have been done to reach a suitable hardened flip-flops. In ...
متن کاملContinuum solvent model studies of the interactions of an anticonvulsant drug with a lipid bilayer.
Valproic acid (VPA) is a short, branched fatty acid with broad-spectrum anticonvulsant activity. It has been suggested that VPA acts directly on the plasma membrane. We calculated the free energy of interaction of VPA with a model lipid bilayer using simulated annealing and the continuum solvent model. Our calculations indicate that VPA is likely to partition into the bilayer both in its neutra...
متن کاملThe Effects of Strained Multiple Quantum Well on the Chirped DFB-SOA All Optical Flip-Flop
In this paper, based on the coupled-mode and carrier rate equations, a dynamic model and numerical analysis of a multi quantum well (MQW) chirped distributed feedback semiconductor optical amplifier (DFB-SOA) all-optical flip-flop is precisely derived. We have analyzed the effects of strains of QW and MQW and cross phase modulation (XPM) on the dynamic response, and rise and fall times of the ...
متن کاملPerformance Analysis of Reversible Sequential Circuits Based on Carbon NanoTube Field Effect Transistors (CNTFETs)
This study presents the importance of reversible logic in designing of high performance and low power consumption digital circuits. In our research, the various forms of sequential reversible circuits such as D, T, SR and JK flip-flops are investigated based on carbon nanotube field-effect transistors. All reversible flip-flops are simulated in two voltages, 0.3 and 0.5 Volt. Our results show t...
متن کاملTwo Novel D-Flip Flops with Level Triggered Reset in Quantum Dot Cellular Automata Technology
Quantum dot cellular automata (QCA) introduces a pioneer technology in nano scale computer architectures. Employing this technology is one of the solutions to decrease the size of circuits and reducing power dissipation. In this paper, two new optimized FlipFlops with reset input are proposed in quantum dot cellular automata technology. In addition, comparison with related works is performed.Th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 97 12 شماره
صفحات -
تاریخ انتشار 2009